منابع مشابه
A Relative of the Lemma of Schwarz*
so that d(r, 0; ƒ') is the length of the segment on the w-plane between the image of the point 3 = 0 and the image of the point z = re. The lemma of Schwarz is the following: THEOREM 1. Let w=f(z) be analytic f or \z\ < 1 . If d(r,6;f)S 1 for all (r, 6) with r<l, then (1) d(r,0;f)gr and (2) | / ( 0 ) | ^ 1 . The sign of equality holds in (1) (for r^O) and in (2), if and only if \f(z) | = 1 ; th...
متن کاملA Schwarz Lemma for Correspondences and Applications
A version of the Schwarz lemma for correspondences is studied. Two applications are obtained namely, the ‘non-increasing’ property of the Kobayashi metric under correspondences and a weak version of the Wong-Rosay theorem for convex, finite type domains admitting a ‘non-compact’ family of proper correspon-
متن کاملSome Applications of Schwarz Lemma for Operators
A generalized Schwarz lemma and some Harnack type inequalities for operators have been obtained in this paper.
متن کاملA General Schwarz Lemma for Almost-hermitian Manifolds
We prove a version of Yau’s Schwarz Lemma for general almost-complex manifolds equipped with almost-Hermitian metrics. This requires an extension to this setting of the Laplacian comparison theorem. As an application we show that the product of two almost-complex manifolds does not admit any complete almost-Hermitian metric with bisectional curvature bounded between two negative constants that ...
متن کاملA New Variant of the Schwarz{pick{ahlfors Lemma
We prove a “general shrinking lemma” that resembles the Schwarz– Pick–Ahlfors Lemma and its many generalizations, but differs in applying to maps of a finite disk into a disk, rather than requiring the domain of the map to be complete. The conclusion is that distances to the origin are all shrunk, and by a limiting procedure we can recover the original Ahlfors Lemma, that all distances are shru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rendiconti Lincei - Matematica e Applicazioni
سال: 2012
ISSN: 1120-6330
DOI: 10.4171/rlm/618